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SUMMARY

The best equation for introducing students to the meaning of the correlation coefficient is not
Karl Pearson's "product-moment" formula. Better alternatives are presented and discussed here.
The relationship between the correlation and regression coefficients is reviewed. Some historical
discussion is included.

1. Introduction

Almost a century ago, Symonds (1926) published a paper that contained 52 different formulas
for calculating the "product-moment (Pearson) coefficient of correlation" (a.k.a., correlation
coefficient, index of co-relation, or simply "r"); decades before computers, he focused on
formulas useful for "ease of computation". Rodgers and Nicewander (1988) included 13 such
formulas, where "each formula suggests a different way of thinking about" the correlation
coefficient; the authors focused on "interesting" formulas (p. 59); some of their 13 formulas are
not found among Symond's 52. This present paper focuses on 4 formulas useful for teaching the
correlation coefficient's meaning to novice students; one of the 4 is not found in either of those
previous papers.

Which characteristics of a formula are useful for explaining a difficult concept? At the top of
such a list would certainly be that it is both simple and instructive. For example, the concept of
"momentum" as taught in introductory physics classes is explained using:

Momentum = Mass x Velocity

Contrast that with the following formula for the correlation coefficient that is found most
prominently in many introductory statistics textbooks published in the past 100 years:

Standard Formula: =࢘
ିࢄ)∑ ିࢅ)(ഥࢄ (ഥࢅ

ඥ∑(ିࢄ ିࢅ)∑ഥ)ࢄ ഥ)ࢅ

Having taught the correlation coefficient in classrooms and seminars for many years, this author
concludes that the Standard Formula does not belong in introductory statistics textbooks, since it
is far from simple and provides virtually no instructive value to the average novice student, who
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can be more confused than educated by it. Instead, introductory textbooks should include one or
more of the following four formulas.

2. Four Simple and Instructive Formulas

An unnecessary obstacle to simplifying the formula for the correlation coefficient is the
commonly held belief that the formula must output the coefficient's "sign", which is said to
indicate whether the correlation is "positive" or "negative". It can be argued that the sign is
irrelevant and that correlation is neither positive nor negative, as shown by the following
formula and discussion (the formula is from Rogers and Nicewander, p. 62):

Formula 1: =࢘ ࢈
࢞ࡿ

࢟ࡿ

where
b = slope of the least-squares linear regression line, using Y on the vertical axis and

X on the horizontal; the linear regression equation is typically given as Y = a +
bX

Sy = standard deviation of the plotted vertical-axis sample-data values
Sx = standard deviation of the plotted horizontal-axis sample-data values.

As seen in Formula 1, the sign of the correlation coefficient is always the same as that of the
slope, which is typically referred to as the "regression coefficient". The sign of the regression
coefficient (i.e., the "b" in Y = a + bX) tells us whether the relationship between X and Y is
negative or positive (i.e., whether the plotted linear regression line is an increasing or decreasing
function); the sign of the correlation coefficient provides no additional information. If the world
had never heard of the correlation coefficient's sign, nothing would have been lost, and the gain
would have been many fewer confused students.

The next formula is one of Symond's. However, it was printed incorrectly (the square root sign
is missing). The correct formula (from Rodgers & Nicewander, p. 62) is:

Formula 2: =࢘ ඥࢅ࢈ࢄ࢈

where
bX = slope of the least-squares linear regression line when Y is plotted on the vertical

axis, and X is plotted on the horizontal
bY = slope of the least-squares linear regression line when X is plotted on the vertical

axis, and Y is plotted on the horizontal
r = takes the same sign as bX and bY, which always have the same sign.

Formula 2 says that the correlation coefficient is the geometric average of the slopes of the two
possible ways to plot the data, i.e., Y vs. X and X vs. Y.

Francis Galton discovered the correlation coefficient in 1888. He had been frustrated by the
problematic fact that a plot of Y vs. X yields not only a different slope than a plot of X vs. Y but
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also a different relationship. To explain that problem, let the equation for Y vs. X be represented
as Y = a + bXX, and the equation for X vs. Y as X = c + bYY. If the latter equation is rearranged
to yield Y = (X − c)/bY, then amazingly (X − c)/bY does not equal a + bXX. Referring to a paper
Galton published a few years before, he wrote that the "stature of the father is correlated to that
of the adult son, and the stature of the adult son to that of the father...; ...what I there called
'regression,' is different in the different cases" (Galton 1888, p. 143). Twenty years later, he
reminisced that "I could not [yet] see my way to express the results of [such regression analyses]
in a single formula" (Galton 1908, p. 302). Galton found his "single formula" when he
discovered the correlation coefficient.

To make that discovery, Galton changed how he plotted his X,Y data. Instead of scaling the
horizontal and vertical plot axes in the same units as the raw data, he scaled them in units of
"probable error" (which is a 19th century term that is arithmetically related to the 20th century's
"standard deviation"). In other words, he plotted values that had been "transmuted into terms of
a new scale" (Galton 1888, p. 136). In effect, he divided each of the individual X and Y values by
their respective probable error. These transmuted values are denoted by XT and YT, where the
subscript "T" indicates transmuted raw data. Plots of YT vs. XT and of XT vs. YT exhibited the
same "problematic fact" that was mentioned above (that is, (XT − c)/bY did not equal a + bXXT).
Amazingly the two plots had the identical linear regression slope. It is interesting to note that in
his "haste to prepare a paper" on this discovery before anyone else (Galton 1890, p. 421), he did
not clearly explain what meaning to assign to this identical slope that he there called "r", other
than what he gave in the very last words of the paper: "r measures the closeness of correlation"
(Galton 1888, p.145). He did not improve upon that explanation in his subsequent abbreviated
version of the publication (Galton 1889).

Formula 3 is the most direct calculation of the slope of the line on Galton's plot of "transmuted"
X,Y values (i.e., the slope of YT vs. XT). It is a classic Cartesian-coordinate calculation of "rise
over run", where the rise is ܻ݁݅ − തܻand the run is ܺ݅− തܺ, and where the rise and run values are
standardized by dividing by their respective standard deviations.

Formula 3: =࢘
ିࢋࢅ) ഥࢅ ) ⁄࢟ࡿ

ିࢄ) ഥࢄ ) ⁄࢞ࡿ

where
ഥࢅ = arithmetic mean of the plotted vertical-axis sample-data values (i.e., the Yi's)
ഥࢄ = arithmetic mean of the plotted horizontal-axis sample-data values (i.e., the

Xi's)
Sy = standard deviation of the plotted vertical-axis sample-data values
Sx = standard deviation of the plotted horizontal-axis sample-data values
Xi = any arbitrarily chosen sample-data value plotted on the horizontal axis
Yei = a + bXi = the output of the least-squares linear regression equation derived

from the "Y on X" plot of the sample-data; this Yei value must be calculated
with the Xi value used in Formula 3's denominator.
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The simplest and possibly the most instructive formula for the magnitude of the correlation
coefficient is this last one, which is a ratio of two standard deviations (the formula is from
Rogers and Nicewander, p. 62):

Formula 4 (magnitude only): =࢘
(ࢋࢅ)ࡿ

࢟ࡿ

where S(Yei) is the standard deviation of all the Yei values derived from all the plotted Xi
sample-data values, and Sy is the standard deviation of all the plotted Yi sample-data values.

To understand the importance of Formula 4, it is necessary to understand that for a linear-
regression slope (i.e., "b") of a given value, the smallest possible standard deviation for the
vertical-axis sample-data Yi values is when the plotted X,Y points occur exactly on the linear
regression line. The S(Yei) in Formula 4 is that smallest standard deviation. When any of the
plotted X,Y points deviate from that line (in such a way that "b" remains that same "given
value"), the result is a larger standard deviation, which is the Sy in Formula 4.

Formula 4 says that the correlation coefficient equals the fraction of the total observed variation
in Y (as measured by Sy) that can be explained by a perfectly linear relationship between X and Y
(as measured by S(Yei)). The remaining variation is caused by other factors (e.g., measurement
error or confounding factors). For a more mathematically rigorous explanation, it is necessary to
square both sides of the formula, thereby converting the standard deviations into variances and
the correlation coefficient into what is known as the Coefficient of Determination; the correct
statement then is that the coefficient of determination equals the fraction of the observed
variance in Y that can be explained by a perfectly linear relationship between X and Y. However,
since the correlation coefficient value is the same, no matter whether the linear regression plot is
Y vs. X or X vs. Y, the best explanatory statement for use with novice students may be this: The
correlation coefficient represents the fraction of the observed co-variation between the X and Y
variables that can be explained by a perfectly linear relationship between them.
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Figure 1. Identical Very High Correlation Coefficients But Very Different Slopes

Figure 2. Identical High Correlation Coefficients But Very Different Slopes
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Figure 3. Identical Slopes But Different Correlation Coefficients

Figure 4. Identical Slopes But Very Different Correlation Coefficients
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3. Concluding Remarks

In Galton's words, two variables "are said to be co-related when the variation of the one is
accompanied on the average by more or less variation of the other". He also said that the
correlation coefficient is a "simple number" that expresses..."the nearness with which they vary
together" (Galton 1888, pp. 135-136, emphases added). Looking only at Figures 3 and 4, it is
tempting to agree with Galton's definition that the correlation coefficient is a "measure of the
closeness of the co-relation" (Galton 1888, p. 140; emphases added), because in each of those
figures the X,Y data-set that displays the larger correlation coefficient (i.e., the lower line on
each chart) also displays much more "closeness" and "nearness" to its line than does the other
data-set. However, that definition cannot be used to explain why the correlation coefficients in
Figure 2 are identical even though the upper line on the chart was produced with a data-set that
displays much less "closeness" and "nearness" than does the other data-set.

Therefore, it might have been better for Galton to have defined the correlation coefficient as:
A measure of the closeness of the co-relation when comparing linear regression plots of
X,Y data-sets that have the same regression coefficient (i.e., same slope).

That definition helps explain Figures 3 and 4. In order to also help explain Figures 1 and 2, it
might have been even better to define the correlation coefficient as:

The fraction of the observed co-variation between the X,Y variables that can be explained
by a perfectly linear relationship between them.

To help explain any of those figures, the Standard Formula can be used. However, these four
other formulas dissect out the correlation coefficient's meaning so that it can be grasped more
easily by novice students.
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Almost a century ago, Symonds (1926) published a paper that 
contained 52 different formulas for calculating the “product-
moment (Pearson) coefficient of correlation” (a.k.a., correla-
tion coefficient, index of co-relation, or simply r); decades 
before computers, he focused on formulas useful for “ease 
of computation.” Rodgers and Nicewander (1988) included 
13 such formulas, where “each formula suggests a different 
way of thinking about” the correlation coefficient; the authors 
focused on “interesting” formulas (p. 59), and some of their 
13 formulas are not found among Symonds’ 52. This present 
article focuses on four formulas useful for teaching the corre-
lation coefficient’s meaning to novice students; one of the four 
is not found in either of those previous articles.

Which characteristics of a formula are useful for explain-
ing a difficult concept? At the top of such a list would certainly 
be that it is both simple and instructive. For example, the con-
cept of momentum, as taught in introductory physics classes, 
is explained using

Momentum Mass Velocity.= ×

Contrast that with the following standard formula for the cor-
relation coefficient that is found most prominently in many in-
troductory statistics textbooks published in the past 100 years:
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Having taught the correlation coefficient in classrooms 
and seminars for many years, this author concludes that the 
standard formula does not belong in introductory statistics 
textbooks, since it is far from simple and provides virtually 
no instructive value to the average novice student, who can 
be more confused than educated by it. Instead, introduc-
tory textbooks should include one or more of the following 
four formulas.

Four Simple and Instructive Formulas
An unnecessary obstacle to simplifying the formula for the 
correlation coefficient is the commonly held belief that the 
formula must output the coefficient’s sign, which is said to in-
dicate whether the correlation is positive or negative. It can be 
argued that the sign is irrelevant and that correlation is neither 
positive nor negative, as shown by the following formula and 
discussion (Rogers & Nicewander, 1988, p. 62):

,x

y

S
r b

S
= (1)

where

b =   slope of the least-squares linear regression 
line, using Y on the vertical axis and X on the 
horizontal; the linear regression equation is 
typically given as .Y a bX= +

yS =   standard deviation of the plotted vertical-axis 
sample-data values.

xS =   standard deviation of the plotted horizontal-
axis sample-data values.

As seen in formula 1, the sign of the correlation coeffi-
cient is always the same as that of the slope, which is typically 
referred to as the regression coefficient. The sign of the regres-
sion coefficient (i.e., the b in )Y a bX= +  tells us whether 
the relationship between X and Y is negative or positive (i.e., 
whether the plotted linear regression line is an increasing or 
decreasing function); the sign of the correlation coefficient 
provides no additional information. If the world had never 
heard of the correlation coefficient’s sign, nothing would have 
been lost, and the gain would have been many fewer con-
fused students.

The next formula is one of Symonds’ (1926). However, it 
was printed incorrectly, with the square root sign missing. The 
correct formula (Rodgers & Nicewander, 1988, p. 62) is:

,X Yr b b= (2)


