Setup the data in rows and columns as shown here. Then input that to Excel, as described in the help function for "ANOVA: Two Factor

The resulting output is a huge set of tables. Somewhere towards the bottom of that set, you will find a small table that looks like this one. With Replication".

Gage R\&R using Excel's "Data Analysis" "Add-in" "Option", on the "DATA" tab: "ANOVA: Two Factor With Replication"

ANOVA						
Source of Variation	ss	df	MS	F	p-value	Fcrit
Sample (= parts)	57.87	9	6.43	0.95	0.49	2.04
Columns (=operators)	0.94	2	0.47	0.07	0.93	3.15
Interaction	113.82	18	6.32	0.93	0.54	1.78
Within	406.12	60	6.77			
Total	578.76	89				

Repeatability $(99 \%)=5.15 \times$ sart $[(578.76-57.87-0.94) /(89-9-2)]$
Gage R\&R (99\%) = sart (Reproducibility ${ }^{2}+$ Repeatability 2)

Near the bottom of that huge set of tables, you will find a small table that looks like this one (minus the red text, which was placed here by John Zorich).

> Perform the 3 calculations shown on this slide (sqrt = square root). This Gage R\&R result has been obtained using the most accurate method (per MSA-3), namely ANOVA.

